How to drill a well in FIVE easy steps

Alex Vaughan, Senior Drilling Engineer
AOGA Legislative Seminar
Dec. 11, 2012
How to Drill a Well in 5 Easy Steps

- Identify where the oil is.
How to Drill a Well in 5 Easy Steps

- Identify where the oil is.
- Rent yourself a rig.

FOR RENT CHEAP
Yours for only
$300,000 a day
How to Drill a Well in 6 Easy Steps

- Identify where the oil is.
- Rent yourself a rig.
- Drill a hole

Our wells may take 60 Days or longer & approx. $15MM to Drill and Case
How to Drill a Well in 5 Easy Steps

- Identify where the oil is.
- Rent yourself a rig.
- Drill a hole
- Run casing & cement

Diagram:

16" Conductor
11 ¾" Surface
14 ½" Hole

9 5/8" Drilling Liner
10 5/8" Hole w/ 12 ¼" Hole Opener

7 " Intermediate
8 ½" Hole w/ 9 ½" Hole Opener

4 ½" Production Liner
6 1/8" Hole
How to Drill a Well in 5 Easy Steps

- Identify where the oil is.
- Rent yourself a rig.
- Drill a hole
- Run casing & cement
- Run your completion

“Completing” a well can take another $15MM to execute the program

The lower completion will have 127 pieces of equipment going in the hole
Half-time Takeaways

- Expensive art, science, and luck
- Drilling does not equal production
- Very technical and regulated process
Semi-Detailed look at drilling a Well

- Identifying a target.
- Design the directional path to reach the target.
- Select tools and services required.
- Design a complete program to drill to target
- Install a completion to achieve the wells objective.
Identifying an objective & target.

What do you want out of your well?

- Disposal well
- Injector or producer well
- Data collection

Where should you drill it?
Design a directional path to reach the target.

1.3 Miles of Oil bearing formation
Design a directional path to reach the target.

<table>
<thead>
<tr>
<th>Index</th>
<th>Time</th>
<th>Elevation</th>
<th>Depth</th>
<th>Temperature</th>
<th>Leg Length</th>
<th>Leg Time</th>
<th>Leg Speed</th>
<th>Leg Course</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8/…</td>
<td>54 ft</td>
<td></td>
<td></td>
<td>11 ft</td>
<td>0:01:00</td>
<td>0.1 mph</td>
<td>191° true</td>
<td>N61 12.262 W149 53.487</td>
</tr>
<tr>
<td>2</td>
<td>8/…</td>
<td>35 ft</td>
<td></td>
<td></td>
<td>1 ft</td>
<td>0:00:37</td>
<td>0.0 mph</td>
<td>35° true</td>
<td>N61 12.261 W149 53.487</td>
</tr>
<tr>
<td>3</td>
<td>8/…</td>
<td>32 ft</td>
<td></td>
<td></td>
<td>1 ft</td>
<td>0:00:30</td>
<td>0.0 mph</td>
<td>35° true</td>
<td>N61 12.261 W149 53.487</td>
</tr>
<tr>
<td>4</td>
<td>8/…</td>
<td>30 ft</td>
<td></td>
<td></td>
<td>25 ft</td>
<td>0:00:30</td>
<td>0.6 mph</td>
<td>224° true</td>
<td>N61 12.261 W149 53.487</td>
</tr>
<tr>
<td>5</td>
<td>8/…</td>
<td>26 ft</td>
<td></td>
<td></td>
<td>308 ft</td>
<td>0:00:30</td>
<td>7 mph</td>
<td>141° true</td>
<td>N61 12.258 W149 53.493</td>
</tr>
<tr>
<td>6</td>
<td>8/…</td>
<td>0 ft</td>
<td></td>
<td></td>
<td>0.1 mi</td>
<td>0:00:30</td>
<td>14 mph</td>
<td>93° true</td>
<td>N61 12.219 W149 53.427</td>
</tr>
<tr>
<td>7</td>
<td>8/…</td>
<td>-6 ft</td>
<td></td>
<td></td>
<td>0.1 mi</td>
<td>0:00:30</td>
<td>13 mph</td>
<td>98° true</td>
<td>N61 12.211 W149 53.221</td>
</tr>
<tr>
<td>8</td>
<td>8/…</td>
<td>-6 ft</td>
<td></td>
<td></td>
<td>0.1 mi</td>
<td>0:00:30</td>
<td>12 mph</td>
<td>117° true</td>
<td>N61 12.198 W149 53.030</td>
</tr>
<tr>
<td>9</td>
<td>8/…</td>
<td>29 ft</td>
<td></td>
<td></td>
<td>491 ft</td>
<td>0:00:30</td>
<td>11 mph</td>
<td>97° true</td>
<td>N61 12.159 W149 52.869</td>
</tr>
<tr>
<td>10</td>
<td>8/…</td>
<td>29 ft</td>
<td></td>
<td></td>
<td>473 ft</td>
<td>0:00:30</td>
<td>11 mph</td>
<td>103° true</td>
<td>N61 12.140 W149 52.702</td>
</tr>
<tr>
<td>11</td>
<td>8/…</td>
<td>32 ft</td>
<td></td>
<td></td>
<td>413 ft</td>
<td>0:00:30</td>
<td>9 mph</td>
<td>156° true</td>
<td>N61 12.133 W149 52.544</td>
</tr>
<tr>
<td>12</td>
<td>8/…</td>
<td>37 ft</td>
<td></td>
<td></td>
<td>362 ft</td>
<td>0:00:30</td>
<td>8 mph</td>
<td>178° true</td>
<td>N61 12.071 W149 52.487</td>
</tr>
<tr>
<td>13</td>
<td>8/…</td>
<td>59 ft</td>
<td></td>
<td></td>
<td>326 ft</td>
<td>0:00:30</td>
<td>7 mph</td>
<td>180° true</td>
<td>N61 12.012 W149 52.483</td>
</tr>
<tr>
<td>14</td>
<td>8/…</td>
<td>73 ft</td>
<td></td>
<td></td>
<td>322 ft</td>
<td>0:00:30</td>
<td>7 mph</td>
<td>180° true</td>
<td>N61 11.958 W149 52.483</td>
</tr>
<tr>
<td>15</td>
<td>8/…</td>
<td>89 ft</td>
<td></td>
<td></td>
<td>312 ft</td>
<td>0:00:30</td>
<td>7 mph</td>
<td>179° true</td>
<td>N61 11.905 W149 52.483</td>
</tr>
</tbody>
</table>
Select tools and services required.

- Drilling Rig
- Drillstring
- Fluid System
- Casing
- Cement
- Completion
Design & Execution of the Drilling Program
Design & Execution of the Drilling Program

- Drill Surface Hole
- Run Surface Casing
- Cement Surface Casing
- Drill Next Hole Section
Drillstring: The Bit and Motor

Bit
- Cuts or crushes rock

Motor (simple)
- Orients the bit in the desired direction

Rotary Steerable (smooth)
- Orients the bit in the desired direction while continuously rotating
Drillstring: MWD/LWD

- **Measurement While Drilling**
 - Pressure, temperature, & wellbore position in 3D
 - “Downhole GPS”

What is going on down there?
Where are we relative to the rig?
- **Logging While Drilling**
 - Provides real-time information on formation characteristics.
 - Allows us to determine where the bit is relative to the formation we are drilling.
 - Helps define well placement and predict drilling hazards

What is going on down there?

Where are we relative to the formations we are drilling?
Drilling Mud

The life blood of the modern drilling operations

- Drilling fluid, known as mud, has several different functions essential to drilling an oil or gas well, including
 - Subsurface pressure control
 - Cuttings removal and transport to the surface
 - Suspend solids
 - Helps suspends weight of the drillstring and casing
 - Lubrication & cooling of the drillstring & bit
 - Wellbore stability
 - Transmit hydraulic energy to downhole tools
Casing

- Protect freshwater formations
- Isolate formations with significantly different pressure gradients
- Isolate unstable formations or zones of lost returns
Cement

Protects & seals the wellbore
- Isolate fluids from moving between formations
- Isolate unstable formations
- Plug off unwanted wellbore
Cutting Edge Technology We Use

- **Logging tools**
 - Formation pressure sampling.
 - Perpendicular cores from the borehole.

- **Real time down-hole data streaming**
 - Formation data streamed anywhere in the world.

- **Managed pressure drilling**
 - High tech pressure control

- **Radio Frequency ID downhole tools**
 - Digital chip tool activation.

- **Survey management**
 - Crustal Anomalies
 - Gravitational field shifts
 - Solar flares